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Abstract. The Kaczmarz algorithm is an iterative method for reconstructing a signal
x ∈ Rd from an overcomplete collection of linear measurements yn = 〈x, ϕn〉, n ≥ 1.
We prove quantitative bounds on the rate of almost sure exponential convergence in the
Kaczmarz algorithm for suitable classes of random measurement vectors {ϕn}∞n=1 ⊂ Rd.
Refined convergence results are given for the special case when each ϕn has i.i.d. Gaussian
entries and, more generally, when each ϕn/‖ϕn‖ is uniformly distributed on Sd−1. This
work on almost sure convergence complements the mean squared error analysis of Strohmer
and Vershynin for randomized versions of the Kaczmarz algorithm.

1. Introduction

The Kaczmarz algorithm is a classical iterative method for solving an overdetermined
consistent linear system Φx = y. The algorithm is based on the mechanism of projection
onto convex sets and also falls into the class of row-action methods. Within the spectrum
of linear solvers, some key features of the Kaczmarz algorithm are its scalability and its
simplicity; a single inner product is the dominant computation in each step of the algorithm.
This has made the Kaczmarz algorithm a good candidate for high dimensional problems.

To describe the Kaczmarz algorithm let {ϕn}∞n=1 ⊂ Rd be a given spanning set for Rd.
Suppose that x ∈ Rd is unknown but that one is given access to the linear measurements
yn = 〈x, ϕn〉, for n ≥ 1. The Kaczmarz algorithm is used to approximately recover x from
the linear measurements {yn}∞n=1.

The Kaczmarz algorithm starts with an arbitrary initial estimate x0 ∈ Rd and produces
approximate solutions xn ∈ Rd by the following iteration:

∀ n ≥ 1, xn = xn−1 +
yn − 〈ϕn, xn−1〉
‖ϕn‖2

ϕn. (1.1)

Geometrically, this is an iterative projection algorithm that updates the estimate xn−1 ∈ Rd

by orthogonally projecting it onto the affine hyperplane

Hn = {u ∈ Rd : 〈u, ϕn〉 = yn}.
The initial convergence analysis for this algorithm in [7] focuses on finite dimensional spaces,
but there are also subsequent extensions to infinite dimensional spaces, e.g., in [5, 8, 23].

The original work of Kaczmarz applies (1.1) to a fixed N × d system Φx = y by iterating
the algorithm on an infinite periodic extension of the system, see [7]. In particular, for n > N
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one defines ϕn = ϕp(n) and yn = yp(n) where p(n) ∈ {1, · · · , N} is the unique integer such
that p(n) ≡ n modulo N . Kaczmarz showed that iteratively cycling through the system in
this manner produces estimates xn that are guaranteed to converge to x:

lim
n→∞

‖x− xn‖ = 0.

It is well known that the algorithm (1.1) produces monotonically improving approximations
as the iteration number increases. Specifically, for any x ∈ Rd and {ϕn}Nn=1 ⊂ Rd and any
initial estimate x0 ∈ Rd the Kaczmarz algorithm satisfies

‖x− xn+1‖ ≤ ‖x− xn‖. (1.2)

This basic fact can, for example, be seen as a corollary to Proposition 3.1. However, it can
be difficult to quantify the associated rates of convergence in (1.1). Geometric considerations
imply that the specific rate at which the Kaczmarz algorithm converges depends strongly
on the order in which measurements yn are entered into the algorithm, and in certain cir-
cumstances the convergence can be quite slow. Motivated by this, Strohmer and Vershynin
[20, 21] investigated a randomized version of the Kaczmarz algorithm where the new informa-
tion (yn, ϕn) processed at each step of the algorithm (1.1) is randomly selected from among
the N measurements. They proved that this randomized approach achieves mean squared
error with a rate that is quantifiable in terms of a particular matrix condition number κ(Φ)
as

E‖x− xn‖2 ≤ (1− κ(Φ)−2)n ‖x− x0‖2. (1.3)

The theoretical and numerical analysis of the randomized Kaczmarz algorithm in [21] shows
that this method converges exponentially fast and has features that are competitive with
(and sometimes superior to) standard approaches such as the conjugate gradient method.

In addition to the analysis of mean squared convergence rates, there is recent work that
highlights other favorable properties of the Kaczmarz algorithm. The work in [12] shows
that the algorithm is robust against noise in the measurements yn. There is work in [4]
on accelerating the convergence of the Kaczmarz algorithm in high dimensions with help
of the Johnson-Lindenstrauss Lemma. The discussion in [1, 2, 22] addresses choices of
randomization for the algorithm.

The Kaczmarz algorithm and its variants appear in a wide variety of settings. For example,
it has been applied to computer tomography and image processing in [11, 17], and used for
sparse signal recovery in compressed sensing in [19]. In signal processing, the closely related
Rangan-Goyal algorithm is used for consistent reconstruction of quantized data, see [14, 13].

Overview and main results. The main aim of this article is to study the issue of al-
most sure convergence rates for the Kaczmarz algorithm with random measurement vectors
{ϕn}∞n=1. We prove that the Kaczmarz algorithm almost surely converges exponentially fast
and we provide quantitative bounds on the associated convergence rate.

The paper is organized as follows. Section 2 provides definitions and background properties
of the random measurement vectors {ϕn}∞n=1. Section 3 gives basic formulas for the error
‖x − xn‖ in the Kaczmarz algorithm, and Section 4 gives basic bounds on the moments
E‖x− xn‖2s with s > 0.
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Our main results appear in Section 5 and Section 6. Our first main result, Theorem 5.3
in Section 5, provides sharp almost sure rates of exponential convergence for the Kaczmarz
algorithm in the important case when the normalized measurement vectors ϕn/‖ϕn‖ are
independent and uniformly distributed on Sd−1 (for example, this applies to random vectors
ϕn with i.i.d. Gaussian entries). Our next main results, Theorem 6.2 and Theorem 6.3 in
Section 6, provide quantitive bounds on the rate of almost sure exponential convergence for
general classes of random measurement vectors.

2. Random measurements

This section will discuss conditions on the random measurement vectors {ϕn}∞n=1 ⊂ Rd

which will be needed in our analysis of almost sure convergence in the Kaczmarz algorithm.
Suppose that the random measurement vectors {ϕn}∞n=1 ⊂ Rd are used for the Kaczmarz

algorithm (1.1). We always assume that each ϕn is almost surely nonzero, Pr[ ‖ϕn‖ = 0 ] = 0,
to ensure that the Kaczmarz iteration (1.1) is well defined. Since most of our error analysis
only involves the normalized random vectors ϕn/‖ϕn‖, the assumption that each ϕn is almost
surely nonzero also guarantees that each ϕn/‖ϕn‖ is well defined.

Our general analysis of the Kaczmarz algorithm will require that the normalized ran-
dom measurement vectors {ϕn/‖ϕn‖}∞n=1 be independent but not necessarily identically dis-
tributed. Since it is common in practice to make assumptions directly on the measurement
vectors {ϕn}∞n=1, it is useful to note that independence of the measurement vectors {ϕn}∞n=1

is a strictly stronger assumption than independence of the normalized measurement vectors
{ϕn/‖ϕn‖}∞n=1. Our analysis will allow the possibility of non-independent {ϕn}∞n=1, but will
always require that {ϕn/‖ϕn‖}∞n=1 be independent.

Lemma 2.1. If the random vectors {ϕn}∞n=1 ⊂ Rd are independent and almost surely nonzero
then the normalized random vectors {ϕn/‖ϕn‖}∞n=1 are also independent.

As mentioned above, the converse of Lemma 2.1 is not true.

Example 2.2. Let θ1, θ2 be independent random variables that are uniform on [0, 2π). Define
the random vectors ϕ1 = (cos θ1, sin θ1) and ϕ2 as follows:

ϕ2 =

{
(cos θ2, sin θ2), if 0 ≤ θ1 < π,

2(cos θ2, sin θ2), if π ≤ θ1 < 2π.

Then ϕ1/‖ϕ1‖ and ϕ2/‖ϕ2‖ are independent, but ϕ1, ϕ2 are not independent.

Our analysis of almost sure convergence will involve the following frame-type assumptions
on the normalized random measurement vectors {ϕn/‖ϕn‖}∞n=1.

Definition 2.3. Let s > 0 be fixed. The unit-norm random vector u ∈ Rd has the Kaczmarz
bound 0 < α < 1 of order s if

∀x ∈ Sd−1,
(
E
(
1− |〈x, u〉|2

)s)1/s ≤ α. (2.1)

If (2.1) holds with equality then we shall say that the Kaczmarz bound is tight.
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Convergence rates in the Kaczmarz algorithm will depend on the specific value of the
Kaczmarz bound 0 < α < 1. Qualitatively, if u ∈ Rd is a given random vector and s > 0
is fixed, note that (2.1) holds for some 0 < α < 1 if and only if u is not concentrated on a
subspace of Rd with positive codimension.

In the special case when s = 1, Definition 2.3 reduces to the notion of probabilistic frame
and deserves further mention.

Definition 2.4. The random vector u ∈ Rd has the probabilistic lower frame bound β > 0 if

∀x ∈ Rd, E|〈x, u〉|2 ≥ β‖x‖2. (2.2)

The random vector u ∈ Rd is a tight probabilistic frame if (2.2) holds with equality

∀x ∈ Rd, E|〈x, u〉|2 = β‖x‖2. (2.3)

If u ∈ Sd−1 is a unit-norm tight probabilistic frame we shall simply say that u is isotropic.

Thus, a Kaczmarz bound 0 < α < 1 of order s = 1 corresponds to a probabilistic frame
bound β = 1−α. A condition similar to (2.2) was used for the analysis of the Rangan-Goyal
algorithm in [14], cf. [13]. Random vectors satisfying the probabilistic tight frame condition
(2.3) are fully characterized in [3] and it is shown that if u is isotropic then the constant β
in (2.3) must satisfy

β = βd = 1/d. (2.4)

We refer the reader to [3] for further background on the interesting properties of probabilistic
frames.

Example 2.5. If u ∈ Rd is uniformly distributed on Sd−1 then u is isotropic.

Example 2.6. Let {fn}Nn=1 ⊂ Sd−1 be a deterministic unit-norm tight frame for Rd, i.e.,

∀x ∈ Rd, ‖x‖2 =
d

N

N∑
n=1

|〈x, fn〉|2.

If the discrete random vector u ∈ Rd is defined to be uniformly distributed on the set
{fn}Nn=1, then u satisfies (2.3). For example, if {fn}dn=1 ⊂ Rd is an orthonormal basis for
Rd and u ∈ Rd randomly selects an element of this basis then the random vector u satisfies
(2.3).

Example 2.7. Let F be a full rank N × d matrix and let {fn}Nn=1 ⊂ Rd be the rows of F .
Let u ∈ Rd be the discrete random vector with the probability mass function

∀ 1 ≤ k ≤ N, Pr[u = fk] = ‖fk‖2/
N∑
n=1

‖fn‖2.

It was shown in [21] that u has a probabilistic lower frame bound β > 0 that satisfies

β ≥
(

1

κ(F )

)2

=
1

‖F‖2Fr‖F−1‖22
. (2.5)
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For our analysis of almost sure convergence it will be useful to have a version of Definition
2.3 for the limiting case s = 0. The following standard lemma will be useful for this (for
example, see page 71 of [15]).

Lemma 2.8. Let η be a random variable such that E|η|s <∞ for some s > 0. Then

inf
s>0

(E|η|s)1/s = lim
s→0

(E|η|s)1/s = exp(E log |η|).

Corollary 2.9. If u ∈ Sd is a random unit-vector then

∀x ∈ Sd, lim
s→0

(E(1− |〈x, u〉|2)s)1/s = exp
(
E[log(1− |〈x, u〉|2)]

)
. (2.6)

In both Lemma 2.8 and Corollary 2.9 we interpret exp(−∞) = 0. Motivated by Corollary
2.9, the following definition will naturally arise in our analysis of almost sure convergence in
the Kaczmarz algorithm.

Definition 2.10. The random unit-vector u ∈ Sd−1 has a logarithmic Kaczmarz bound
0 < ρ < 1 if

∀x ∈ Sd−1, exp
(
E[log(1− |〈x, u〉|2)]

)
≤ ρ. (2.7)

We say that u ∈ Sd−1 has a tight logarithmic Kaczmarz bound ρ if (2.7) holds with equality.

For perspective, E[log(1 − |〈x, u〉|2)] in (2.7) can be expressed as a perturbation of the
familiar logarithmic potential [16] by

∀x ∈ Sd−1, E[log(1− |〈x, u〉|2)] = 2E[log ‖x− u‖] + E[log(1− 4−1‖x− u‖2)].
Note that for x, u ∈ Sd−1, L(x, u) = log(1− |〈x, u〉|2) is singular at both u = x and u = −x.

Random vectors {ϕn}∞n=1 ⊂ Rd with the following properties will play an important role
in Section 5. For convenience we collect these properties in the following definition.

Definition 2.11. We shall say that the random vectors {ϕn}∞n=1 ⊂ Rd have the normalized
independence and uniformity (NIU) property if each ϕn is almost surely nonzero and if the
normalized vectors {ϕn/‖ϕn‖}∞n=1 are independent and uniformly distributed on Sd−1.

Lemma 2.1 and Example 2.2 provide insight into the assumption in Definition 2.11 that
{ϕn/‖ϕn‖}∞n=1 be independent. The following examples provide some insight into the con-
dition that each ϕn/‖ϕn‖ is uniformly distributed on Sd−1.
Example 2.12. Let u ∈ Rd be a uniform random vector on Sd−1. We shall consider a
random vector ϕ ∈ Rd to be radial if it is of the form ϕ = ru where r ∈ R is a random
variable that is independent of u. If the random vector ϕ ∈ Rd is radial and almost surely
nonzero then ϕ/‖ϕ‖ is uniform on Sd−1. For example, if ϕ ∈ Rd is a random Gaussian vector
with i.i.d. N(0, 1) entries then ϕ/‖ϕ‖ is uniformly distributed on Sd−1.
Example 2.13. Let θ be uniformly distributed on [0, 2π). Define the random vector ϕ ∈ R2

by

ϕ =

{
(cos θ, sin θ), if 0 ≤ θ < π,

2(cos θ, sin θ), if π ≤ θ < 2π.

Then ϕ/‖ϕ‖ is uniformly distributed on S1 but ϕ ∈ R2 is not radial.
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3. Basic error formulas for the Kaczmarz algorithm

The following error formulas for the Kaczmarz algorithm will play an important role
throughout this paper.

Proposition 3.1. Suppose that x ∈ Rd and that the measurement vectors {ϕn}∞n=1 ⊂ Rd are
nonzero. Suppose that the measurements yn = 〈x, ϕn〉, with n ≥ 1, are used as input to the
Kaczmarz algorithm with initial estimate x0 ∈ Rd.

The error zn = x− xn after the nth iteration of the Kaczmarz algorithm satisfies

‖zn‖2 = ‖zn−1‖2 −
∣∣∣〈zn−1, ϕn

‖ϕn‖

〉∣∣∣2 (3.1)

and

‖zn‖2 = ‖z0‖2
n∏
k=1

(
1−

∣∣∣〈 zk−1
‖zk−1‖

,
ϕk
‖ϕk‖

〉∣∣∣2) . (3.2)

We adopt the convention that zk−1/‖zk−1‖ = 0 is the zero vector when ‖zk−1‖ = 0.

Proof. The defining iteration (1.1) can be written in terms of the error zn = x− xn as

zn = zn−1 −
〈
zn−1,

ϕn
‖ϕn‖

〉 ϕn
‖ϕn‖

.

Since ϕn is orthogonal to zn, the equation (3.1) now follows:

‖zn‖2 = ‖zn−1‖2 −
∣∣∣〈zn−1, ϕn

‖ϕn‖

〉∣∣∣2 = ‖zn−1‖2
(

1−
∣∣∣〈 zn−1
‖zn−1‖

,
ϕn
‖ϕn‖

〉∣∣∣2) . (3.3)

A repeated application of (3.3) gives that for all 0 ≤ l ≤ n− 1,

‖zn‖2 = ‖zl‖2
n∏

k=l+1

(
1−

∣∣∣〈 zk−1
‖zk−1‖

,
ϕk
‖ϕk‖

〉∣∣∣2) . (3.4)

When l = 0 this yields the formula (3.2). �

From Proposition 3.1, we see that the monotonicity of the Kaczmarz algorithm in (1.2)
is an immediate corollary of (3.1). Consequently, if zl = 0 for some l ≥ 1 then zj = 0 for
all j ≥ l. So, if zl = 0, the convention that zk/‖zk‖ = 0 for k ≥ l simply sets each term in
the partial product in (3.4) to be one. While it is possible to have the desirable outcome of
finite convergence to zero error ‖zl‖ = 0, this will generally not be the case for continuous
random measurements. For example, if the normalized measurement vectors {ϕn/‖ϕn‖}∞n=1

are absolutely continuous with respect to the normalized surface measure on Sd−1 then by
(3.2) each error zk is almost surely nonzero.

Corollary 3.2. Suppose the measurement vectors {ϕn}∞n=1 ⊂ Rd are random vectors such
that each ϕn is almost surely nonzero. Additionally suppose that {ϕn/‖ϕn‖}∞n=1 are indepen-
dent and that each ϕn/‖ϕn‖ is absolutely continuous with respect to the uniform measure on
Sd−1. If the initial error z0 = x − x0 in the Kaczmarz algorithm is nonzero then for each
k ≥ 1, there holds Pr[‖x− xk‖ = 0] = Pr[zk = 0] = 0.
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4. Moment bounds in the Kaczmarz algorithm

The following moment bound and its proof is motivated by the work in [21] on mean
squared error.

Theorem 4.1. Let {ϕn}∞n=1 ⊂ Rd be random vectors that are almost surely nonzero and
such that {ϕn/‖ϕn‖}∞n=1 are independent. Let s > 0 be fixed and assume that each ϕn/‖ϕn‖
has the common Kaczmarz bound α > 0 of order s, as in (2.1).

The error after the nth iteration of the Kaczmarz algorithm satisfies

E‖x− xn‖2s ≤ αns‖x− x0‖2s. (4.1)

If additionally the Kaczmarz bound α is tight then

E‖x− xn‖2s = αns‖x− x0‖2s. (4.2)

Proof. Let zn = x − xn and un = ϕn/‖ϕn‖. Note that zn−1 = zn−1(z0, u1, · · · , un−1) is
a function of the deterministic initial error z0 ∈ Rd and the independent random vectors
{uk}n−1k=1 ⊂ Sd−1. In particular, un and zn−1/‖zn−1‖ are independent. Let the measure µk
denote the probability distribution of uk.

Since un satisfies the Kaczmarz bound α of order s, it follows that if {ũk}n−1k=1 ⊂ Sd−1 are
fixed unit-vectors then∫

Sd−1

(
1−

∣∣∣〈 zn−1(z0, ũ1, · · · , ũn−1)
‖zn−1(z0, ũ1, · · · , ũn−1)‖

, un

〉∣∣∣2)s dµn(un) ≤ αs. (4.3)

Since zn−1 and un = ϕn/‖ϕn‖ are independent, (4.3) implies that

E

[(
1−

∣∣∣〈 zn−1
‖zn−1‖

,
ϕn
‖ϕn‖

〉∣∣∣2)s ∣∣∣∣∣ zn−1
]
≤ αs. (4.4)

The error representation (3.1) together with (4.4) and properties of conditional expecta-
tions and the fact that the random vectors {uk}nk=1 are independent implies

E‖zn‖2s = E
(
‖zn−1‖2s

(
1−

∣∣∣〈 zn−1
‖zn−1‖

,
ϕn
‖ϕn‖

〉∣∣∣2)s )
= E

(
E

[
‖zn−1‖2s

(
1−

∣∣∣〈 zn−1
‖zn−1‖

,
ϕn
‖ϕn‖

〉∣∣∣2)s ∣∣∣∣∣ zn−1
])

= E

(
‖zn−1‖2s E

[(
1−

∣∣∣〈 zn−1
‖zn−1‖

,
ϕn
‖ϕn‖

〉∣∣∣2)s ∣∣∣∣∣ zn−1
])

≤ E
(
‖zn−1‖2sαs

)
= αs E‖zn−1‖2s. (4.5)

Iterating (4.5) yields (4.1). A similar computation shows that if each ϕn/‖ϕn‖ has a tight
Kaczmarz bound α then (4.2) holds. �
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Taking s = 1 in Theorem 4.1 gives the following mean squared error bound for the Kacz-
marz algorithm. Corollary 4.2 is essentially the same as the mean squared error bounds
in [21] but is expressed under a superficially more general model of randomization using
probabilistic frames instead of the finite random vectors as in Example 2.7. Theorem 4.1
and Corollary 4.2 should both be viewed as reflections of the work in [21].

Corollary 4.2. Let {ϕn}∞n=1 ⊂ Rd be random vectors that are almost surely nonzero and
such that {ϕn/‖ϕn‖}∞n=1 are independent. If each ϕn/‖ϕn‖ has the common probabilistic
lower frame bound β > 0 then the error after the nth iteration of the Kaczmarz algorithm
satisfies

E‖x− xn‖2 ≤ (1− β)n‖x− x0‖2. (4.6)

If additionally each ϕn/‖ϕn‖ is isotropic (2.3) then

E‖x− xn‖2 = (1− d−1)n‖x− x0‖2. (4.7)

Similar to [21], Corollary 4.2 yields the following examples. Versions of these examples ap-
pear in [21] under a slightly different statement of randomization, so we include them here to
illustrate analogs for randomization using probabilistic frames and for random measurements
satisfying Definition 2.11.

Example 4.3. If {ϕn}∞n=1 ⊂ Rd satisfy the properties of Definition 2.11 then each ϕn/‖ϕn‖
is isotropic with tight probabilistic frame bound β = 1/d. Thus the mean squared error of
the Kaczmarz algorithm for measurements with the properties of Definition 2.11 satisfies

E‖x− xn‖2 = (1− d−1)n‖x− x0‖2.

Example 4.4 (Computational Complexity). Let {ϕn}∞n=1 ⊂ Rd be random vectors satisfying
the properties of Definition 2.11. Given ε > 0, let nε be the smallest number of iterations of
the Kaczmarz algorithm needed to ensure ε-precise mean squared error

E‖x− xnε‖2 ≤ ε2‖x− x0‖2.

By (4.2), we seek the smallest integer nε such that (1 − β)nε ≤ ε2. Since β = βd = 1/d, in
high dimensions we have log(1− β) ≈ −β = −1/d and

nε =
⌈ 2 log ε

log(1− d−1)

⌉
≈ 2d | log ε|. (4.8)

By (4.8), O(d) iterations suffice to ensure ε-precise mean squared error. Moreover, since
each iteration of the Kaczmarz algorithm requires O(d) elementary operations, ε-precision
is achieved with an overall quadratic complexity of O(d2) operations.

Example 4.5. Theorem 4.1 together with Example 2.7 recovers the mean squared error
bound (1.3) from [21]. In particular, if the randomization from Example 2.7 is used to
solve a given N × d system Φx = y then the Kaczmarz bound α of order s = 1 satisfies
α ≤ 1− [κ(Φ)]−2 so that E‖x− xn‖2 ≤ αn‖x− x0‖2 ≤ (1− [κ(Φ)]−2)n‖x− x0‖2.
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5. Almost sure convergence for uniform random measurements on Sd−1

The product error representation in (3.2) will play an important role in our analysis of
almost sure convergence in the Kaczmarz algorithm. It will be convenient to introduce the
following notation for the individual random variables in the random product (3.2):

ξk =

(
1−

∣∣∣〈 zk−1
‖zk−1‖

,
ϕk
‖ϕk‖

〉∣∣∣2) . (5.1)

Since the first step of the Kaczmarz algorithm requires an initial estimate x0 ∈ Rd, each
random variable ξk is implicitly parametrized by the initial error z0 = x − x0 ∈ Rd. When
needed, we emphasize this dependence by writing ξk = ξk(z0).

With the notation (5.1), the error in the Kaczmarz algorithm satisfies

‖x− xn‖2 = ‖x− x0‖2
(

n∏
k=1

ξk

)
. (5.2)

In general, the random variables {ξk}∞k=1 defined by (5.1) need not be independent, e.g.,
see Example 6.1. However, in the special case when the random measurements {ϕn}∞n=1

satisfy the conditions of Definition 2.11, it will follow that the random variables {ξn}∞n=1

are independent and identically distributed. This will have pleasant consequences for the
subsequent error analysis.

The results of this section are stated under the general requirement that the normalized
vectors {ϕn/‖ϕn‖}∞n=1 ⊂ Sd−1 are independent uniformly distributed random vectors on
Sd−1, but it is worth noting that this includes the special case when the {ϕn}∞n=1 ⊂ Rd

are independent Gaussian random vectors with i.i.d. N(0, 1) entries, see Example 2.12. In
particular, the results of this section immediately apply to give almost sure convergence rates
for the Kaczmarz algorithm in the case of Gaussian measurement vectors.

Lemma 5.1. Fix z0 ∈ Rd. Let {ϕn}∞n=1 ⊂ Rd be random vectors that are almost surely
nonzero and such that the normalized random measurement vectors {ϕn/‖ϕn‖}∞n=1 are inde-
pendent and uniformly distributed on Sd−1. Then the random variables {ξn}∞n=1 defined by
(5.1) are independent and identically distributed versions of the random variable

ξ = 1− |〈e1, u〉|2, (5.3)

where e1 = (1, 0, · · · , 0) ∈ Rd and u ∈ Rd is a uniform random vector on Sd−1. The random
variable ξ does not depend on z0 but does depend on the dimension d.

Proof. Let un = ϕn/‖ϕn‖. The hypotheses on {ϕn/‖ϕn‖}∞n=1 mean that {un}∞n=1 are inde-
pendent random variables that are uniformly distributed on Sd−1. Without loss of generality
we assume that z0 6= 0. Moreover, as noted in the discussion following Proposition 3.1, since
each un is absolutely continuous, we have that Pr[zk = 0] = 0 for all k.

Note that the random vector

zn−1 = zn−1(z0, u1, · · · , un−1)
is a function of the nonrandom initial error z0 and the independent random vectors {uk}n−1k=1 .
Thus, zn−1 and un are independent random vectors. This independence along with the
rotational symmetry of un now implies that if e1 = (1, 0, · · · , 0) then ξn has the same
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distribution as the random variable
(
1− |〈e1, un〉|2

)
. This shows that the random variables

{ξn}∞n=1 are identically distributed.
It remains to show that the random variables {ξn}∞n=1 are independent. Note that the

random variable

ξn = ξn(z0, u1, · · · , un)

is a function of the nonrandom initial error z0 and the independent random vectors {uk}nk=1.
Given constants {βn}∞n=1 ⊂ R, for each n ≥ 1 let

An = {(u1, · · · , un) ∈ (Sd−1)n : ξn(z0, u1, · · · , un) ≤ βn}

denote the event that ξn ≤ βn, and let

Bn =
n⋂
k=1

Ak

denote the event that ξk ≤ βk holds for all 1 ≤ k ≤ n. Let χAn and χBn denote the indicator
functions of the events An and Bn respectively. Let µ denote the normalized surface measure
on Sd−1.

If {ũk}n−1k=1 ⊂ Sd−1 are fixed unit-vectors then the rotational symmetry of un implies∫
Sd−1

χAn(ũ1, · · · , ũn−1, un) dµ(un) = Pr[ξn(z0, ũ1, · · · , ũn−1, un) ≤ βn]

= Pr

[
1−

∣∣∣〈 zn−1(z0, ũ1, · · · , ũn−1)
‖zn−1(z0, ũ1, · · · , ũn−1)‖

, un

〉∣∣∣2 ≤ βn

]
= Pr[1− |〈e1, un〉|2 ≤ βn]

= Pr[ξn ≤ βn]. (5.4)

The independence of {un}∞n=1 together with (5.4) allows one to compute as follows:

Pr[ξ1 ≤ β1, · · · , ξn ≤ βn] = Pr[Bn] = E[χBn ] = E[χBn−1 χAn ]

=

∫
(Sd−1)n−1

χBn−1(u1, · · · , un−1)
(∫

Sd−1

χAn(u1, · · · , un−1, un)dµ(un)

)
dµ(u1) · · · dµ(un−1)

= Pr[ξn ≤ βn]

∫
(Sd−1)n−1

χBn−1(u1, · · · , un−1) dµ(u1) · · · dµ(un−1)

= Pr[ξn ≤ βn] Pr[Bn−1]

= Pr[ξn ≤ βn] Pr[ξ1 ≤ β1, · · · , ξn−1 ≤ βn−1].

Iterating this argument yields that for any n ≥ 1

Pr[ξ1 ≤ β1, · · · , ξn ≤ βn] =
n∏
k=1

Pr[ξk ≤ βk].

This implies that the random variables {ξn}∞n=1 are independent.
�
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Lemma 5.2. Let d ≥ 2 be an integer and let ξ be the random variable given by (5.3). Then

E(log ξ) =
ωd−2
ωd−1

∫ π

0

sind−2 θ log(sin2 θ) dθ, (5.5)

and

E(log ξ)2 =
ωd−2
ωd−1

∫ π

0

sind−2 θ (log(sin2 θ))2dθ, (5.6)

where ωd =
2π

d+1
2

Γ(d+1
2

)
is the surface area of Sd.

Proof. Let e1 = (1, 0, · · · , 0) ∈ Rd and let µ be the normalized surface measure on Sd−1. By
Lemma 5.1

E(log ξ) =

∫
Sd−1

log
(
1− |〈e1, u〉|2

)
dµ(u)

=
ωd−2
ωd−1

∫ 1

−1
(
√

1− s2)d−3 log(1− s2)ds

=
ωd−2
ωd−1

∫ π

0

sind−2 θ log(sin2 θ) dθ.

Similarly,

E(log ξ)2 =

∫
Sd−1

(log(1− |〈e1, u〉|2))2dµ(u) =
ωd−2
ωd−1

∫ π

0

sind−2 θ(log(sin2 θ))2dθ.

�

The independence of the random variables in {ξn}∞n=1 in Lemma 5.1 will allow us to apply
classical tools such as the Strong Law of Large Numbers, the Central Limit Theorem, and
the Law of the Iterated Logarithm to our analysis of almost sure convergence properties of
the Kaczmarz algorithm.

Theorem 5.3. Let {ϕn}∞n=1 ⊂ Rd be random vectors that are almost surely nonzero and
such that the normalized random measurement vectors {ϕn/‖ϕn‖}∞n=1 are independent and
uniformly distributed on Sd−1. Let R = exp (−E log ξ) and σ2 = E(log ξ)2 − (E log ξ)2 be as
computed in Lemma 5.2. Then the error in the Kaczmarz algorithm satisfies

lim
n→∞

‖x− xn‖2/n = R−1, almost surely, (5.7)

and

∀ t ∈ R, lim
n→∞

Pr
[
Rn‖x− xn‖2 ≥ ‖x− x0‖2et

√
nσ2
]

= 1− 1√
2π

∫ t

−∞
e−u

2/2du, (5.8)

and

lim sup
n→∞

(Rn‖x− xn‖2)
1√

2σ2n log(logn) = e, almost surely. (5.9)

Note that the constants R = Rd > 1 and σ = σd > 0 only depend on the dimension d.
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Proof. Let

Sn = log

(
n∏
k=1

ξk

)
=

n∑
k=1

log(ξk). (5.10)

By Lemma 5.1 the {ξk}∞k=1 are independent versions of the random variable ξ given by (5.3).
By Lemma 5.2, E(log ξ) = log(1/R) and Var(log ξ) = σ2 are both finite.

Applying the Strong Law of Large Numbers to (5.10) yields

lim
n→∞

1

n

n∑
k=1

log ξk = E(log ξ) = log(1/R), a.s. (5.11)

Taking the exponential of (5.11) gives

lim
n→∞

(
n∏
k=1

ξn

) 1
n

= exp(E(log ξ)) = R−1, a.s. (5.12)

Equation (5.7) now follows from (5.2) and (5.12).
Applying the Central Limit Theorem to (5.10) gives

∀ t ∈ R, lim
n→∞

Pr

(∑n
k=1 log ξk − n log(1/R)√

nσ2
≤ t

)
=

1√
2π

∫ t

−∞
e−u

2/2du. (5.13)

Exponentiating and reorganizing (5.13) gives

∀ t ∈ R, lim
n→∞

Pr

(
n∏
k=1

Rξk ≥ et
√
nσ2

)
= 1− 1√

2π

∫ t

−∞
e−u

2/2du. (5.14)

Equation (5.8) now follows from (5.2) and (5.14).
To prove (5.9), apply the Law of the Iterated Logarithm to log(Rξn). Since E(log(Rξ)) =

E(log ξ + logR) = 0 and Var(log(Rξ)) = E(log ξ + logR)2 = E(log ξ−E(log ξ))2 = σ2, there
holds

lim sup
n→∞

∑n
k=1 log(Rξk)√

2σ2n log(log n)
= 1, a.s.

which yields

lim sup
n→∞

(
n∏
k=1

Rξk

) 1√
2σ2n log(logn)

= e, a.s.

This implies (5.9). �

For a different perspective on Theorem 5.3 we shall use following lemma.

Lemma 5.4. Given A > 0 and a nonnegative sequence {an}∞n=1 ⊂ R, the following two
statements are equivalent:

(a) lim
n→∞

(an)1/n = 1/A

(b) ∀ 0 < r < A, lim
n→∞

rnan = 0 and ∀ A < r, lim
n→∞

rnan =∞.
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Proof. To prove that (a) implies (b), suppose 0 < r < A. There exists c such that 1/A <
c < 1/r, and hence (an)1/n < c for all sufficiently large n. Therefore

lim sup
n→∞

rnan ≤ lim sup
n→∞

rncn = 0.

A similar argument applies to the case when r > A.
To prove that (b) implies (a), proceed by contrapositive and suppose (a) does not hold.

Then there exists ε > 0 and a strictly increasing sequence {nk}∞k=1 of positive integers such
that |a1/nknk

− 1/A| > ε. Without loss of generality, consider the case when infinitely many

a1/nknk
satisfy a1/nknk

− 1/A > ε. Picking r = (1/A+ ε/2)−1 < A gives that

lim sup
k→∞

rnkank ≥ lim sup
k→∞

rnk(1/A+ ε)nk =∞,

which means that (b) does not hold. �

Thus, (5.7) in Theorem 5.3 can be stated as follows.

Corollary 5.5. Let {ϕn}∞n=1 ⊂ Rd be random vectors that are almost surely nonzero and
such that the normalized random measurement vectors {ϕn/‖ϕn‖}∞n=1 are independent and
uniformly distributed on Sd−1. Let R > 1 be the constant defined in Theorem 5.3.

If 0 < r < R then
lim
n→∞

rn‖x− xn‖2 = 0, almost surely. (5.15)

If r > R then
lim
n→∞

rn‖x− xn‖2 =∞, almost surely. (5.16)

The boundary case r = R in Corollary 5.5 is addressed by (5.8) and (5.9). For example,
taking t = 0 in (5.8) of Theorem 5.3 shows that one does not have almost sure convergence
of Rn‖x − xn‖2 to 0. Likewise, one does not have almost sure convergence of Rn‖x − xn‖2
to infinity either.

Example 5.6. To compare the almost sure convergence rates in Theorem 5.3 with the mean
squared convergence rates in Corollary 4.2, let {ϕn}∞n=1 ⊂ R2 be independent random vectors
that are uniformly distributed on S1. In dimension d = 2, we have that each ϕn is isotropic
with β = β2 = 1/2. Moreover, ω1 = 2π and ω0 = (2

√
π)/Γ(1/2) = 2, so that the constant R

from Theorem 5.3 satisfies

R = exp

(
− 1

π

∫ π

0

log sin2 θdθ

)
= 4. (5.17)

The computation of the integral in (5.17) follows from the fact that the Lobachevsky function

L(t) = −
∫ t

0

log |2 sin θ|dθ = −t log 2− 1

2

∫ t

0

log sin2 θdθ

is π-periodic, e.g., see the appendix in [10]. So, L(π) = L(0) = 0 and this implies (5.17).
By (4.2), the mean squared error satisfies

∀n ≥ 1, E‖x− xn‖2 = (1/2)n‖x− x0‖2. (5.18)
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By Corollary 5.5, we have the following almost sure convergence:

∀ 0 < r < 4, lim
n→∞

rn‖x− xn‖2 = 0, almost surely. (5.19)

In particular, the mean squared error decreases at the rate (1/2)n, whereas the squared error
nearly decreases at the rate of (1/4)n in an almost sure sense.

Example 5.7 (Gaussian measurements). If the measurement vectors {ϕn}∞n=1 ⊂ Rd are
independent and have i.i.d. N(0, 1) entries then the results of Theorem 5.3 and Corollary 5.5
apply to give almost sure convergence rates for Gaussian measurement vectors. In particular,
in dimension d = 2, the mean squared convergence result (5.18) and almost sure convergence
result (5.19) both still hold for Gaussian vectors {ϕn}∞n=1 ⊂ R2 and allow one to compare
the mean squared convergence rate with the almost sure convergence rate.

6. Almost sure convergence for general random measurements

The results of Section 5 showed that if the measurement vectors {ϕn}∞n=1 satisfy the con-
ditions of Definition 2.11 then the random variables {ξn}∞n=1 defined in (5.1) are independent
and identically distributed, and moreover do not depend on the initial error z0. This, in
turn, made it possible to apply classical results on sums of i.i.d. random variables to the
convergence analysis in Theorem 5.3.

For general measurement vectors {ϕn}∞n=1 without the properties in Definition 2.11, it
is possible for the random variables {ξn}∞n=1 to be neither independent nor identically dis-
tributed (see Example 6.1 below), and it is not possible to directly apply the classical con-
vergence results used for Theorem 5.3. In this section we address almost sure convergence
of the Kaczmarz algorithm when a general collection of random measurements {ϕn}∞n=1 is
used.

Example 6.1. Let ϕ ∈ R2 be a discrete random vector that satisfies

Pr[ϕ = (1, 0)] = 2/3 and Pr[ϕ = (0, 1)] = 1/3.

Let ϕ1, ϕ2 be independent versions of ϕ. We consider the random variables ξ1(z0), ξ2(z0) that

arise in the first two iterations of the Kaczmarz algorithm when x = (
√

3/2, 1/2), x0 = (0, 0),

and the initial error z0 = x− x0 satisfies z0 = (
√

3/2, 1/2).
A direct computation shows that ξ1 satisfies

Pr[ξ1 = 1/4] = 2/3 and Pr[ξ1 = 3/4] = 1/3.

Similarly, by considering a tree of probabilities, ξ2 can be shown to satisfy

Pr[ξ2 = 1] = 5/9, and Pr[ξ2 = 0] = 4/9.

Moreover, it can be shown that Pr[ξ1 = 3/4, ξ2 = 1] = 1/9. Thus ξ1, ξ2 are neither indepen-
dent nor identically distributed.

Theorem 6.2. Let {ϕk}∞k=1 ⊂ Rd be random vectors that are almost surely nonzero and for
which {ϕn/‖ϕn‖}∞n=1 are independent. Let s > 0 be fixed and suppose that each ϕn/‖ϕn‖ has
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the common Kaczmarz bound 0 < α < 1 of order s. Then there exists a random variable X
satisfying E|X|s <∞ such that

lim
n→∞

(1/α)n‖x− xn‖2 = X, almost surely. (6.1)

Consequently,

∀ 0 < r < 1/α, lim
n→∞

rn‖x− xn‖2 = 0, almost surely. (6.2)

Proof. Let Yn = (1/α)sn‖x−xn‖2s = (1/α)sn‖zn‖2s and let Fn be the sigma algebra generated
by the random vectors ϕ1/‖ϕ1‖, · · · , ϕn/‖ϕn‖. It can be shown that Yn is measureable with
respect to Fn. Similar computations as in the proof of Theorem 4.1 show that

E[Yn | Fn−1] = E[(1/α)sn‖zn‖2s | Fn−1] ≤ (1/α)s(n−1)‖zn−1‖2s(1/α)sαs = Yn−1.

Thus {(Yn,Fn)}∞n=1 is a supermartingale. Moreover, by Theorem 4.1, there holds

∀n ≥ 1, E[Yn] ≤ ‖z0‖2s.

An application of Doob’s martingale convergence theorem (for example, see Theorem 1
on page 508 of [18]) to the submartingale {(−Yn,Fn)}∞n=1 shows that the limit

lim
n→∞

Yn = Y, exists almost surely,

and the limit satisfies E|Y | <∞. Thus,

lim
n→∞

(1/α)sn‖x− xn‖2s = Y, almost surely. (6.3)

Letting X = Y 1/s, and taking the 1/s power of (6.3), we obtain (6.1)

lim
n→∞

(1/α)n‖x− xn‖2 = X, almost surely.

This implies (6.2) and completes the proof. �

The martingale convergence theorem is a natural tool for analyzing the Kaczmarz algo-
rithm and was previously used in [9] to discuss almost sure convergence of such algorithms
(but with convergence rates only studied for mean squared error). The almost sure conver-
gence rates established in Theorems 5.3 and 6.2 complement the mean squared error rates
in [9, 21]. Martingale and Markov chain methods were also previously applied to the error
analysis of closely related algorithms such as the Rangan-Goyal algorithm in [14] and the
Gibbs sampler in [6]. In the present setting, it is possible to give a direct alternative proof of
the bound (6.2) in Theorem 6.2 without appealing to martingale convergence in the following
manner.

Alternative Proof of Equation (6.2). Let {ξk}∞k=1 be as in (5.1). Fix 0 < r < 1/α and let

Pn = rn
n∏
k=1

ξk.
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Recall that Pn ≥ 0 and that rn‖x− xn‖2 = Pn‖x− x0‖2. To prove (6.2), it suffices to show
that

∀ε > 0, lim
N→∞

Pr

(
∞⋃
n=N

{Pn > ε}

)
= 0. (6.4)

Let ε > 0 be fixed. A union bound together with Chebyshev’s inequality implies that

Pr

(
∞⋃
n=N

{Pn > ε}

)
≤

∞∑
n=N

Pr(Pn > ε) ≤
∞∑
n=N

E(P s
n)

εs
. (6.5)

Theorem 4.1 shows that
E(P s

n) ≤ (rα)sn. (6.6)

Combining (6.5) and (6.6), it follows that

Pr

(
∞⋃
n=N

{Pn > ε}

)
≤ 1

εs

∞∑
n=N

(rα)sn ≤ (rα)sN

εs(1− rsαs)
. (6.7)

Since 0 < rα < 1, it follows that (6.4) holds. This completes the proof. �

The next result improves the conclusion of Theorem 6.2 by considering the limiting case
when s = 0. Unlike Theorem 6.2, the following theorem assumes that the {ϕn/‖ϕn‖}∞n=1 are
identically distributed.

Theorem 6.3. Let {ϕn}∞n=1 ⊂ Rd be random vectors that are almost surely nonzero. As-
sume that the normalized vectors {ϕn/‖ϕn‖}∞n=1 are independent and identically distributed
versions of a random vector u ∈ Sd−1 and assume that u has the logarithmic Kaczmarz bound
0 < ρ < 1. Then the error in the Kaczmarz algorithm satisfies

∀ 0 < r < 1/ρ, lim
n→∞

rn‖x− xn‖2 = 0, almost surely.

Proof. Fix 0 < r < 1/ρ and take α such that ρ < α < 1/r. By Corollary 2.9,

∀x ∈ Sd−1, inf
s>0

(E(1− |〈x, u〉|2)s)1/s ≤ ρ.

So, for every x ∈ Sd−1 there exists sx > 0 such that

(E(1− |〈x, u〉|2)sx)1/sx < α.

It follows from the Lebesgue Dominated Convergence Theorem that

∀x ∈ Sd−1, lim
‖y‖=1;y→x

(E(1− |〈y, u〉|2)sx)1/sx = (E(1− |〈x, u〉|2)sx)1/sx < α.

So, for every x ∈ Sd−1, there exists an open neighborhood Ux ⊂ Sd−1 of x such that

∀y ∈ Ux, (E(1− |〈y, u〉|2)sx)1/sx < α.

Since Sd−1 is compact and Sd−1 ⊂ ∪x∈Sd−1Ux, there exists a finite subcover {Uxj}Jj=1 of

{Ux}x∈Sd−1 . Letting s∗ = min{sxj}Jj=1 and using Lyapunov’s inequality (for example, see
page 193 of [18]), we obtain

∀x ∈ Sd−1, (E(1− |〈x, u〉|2)s∗)1/s
∗
< α.
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Since the {ϕn/‖ϕn‖}∞n=1 are independent and identically distributed versions of the random
vector u, each ϕn/‖ϕn‖ has the common Kaczmarz bound α of order s∗ > 0. Since r < 1/α
we conclude by Theorem 6.2 that lim

n→∞
rn‖x− xn‖2 = 0 almost surely. �

Theorem 6.3 provides stronger error bounds than Theorem 6.2 since by Lemma 2.8 and
Corollary 2.9, a logarithmic Kaczmarz bound ρ satisfies ρ ≤ α = αs for each Kaczmarz
bound α of order s > 0. In the special case when the {ϕn/‖ϕn‖}∞n=1 are independent uniform
random vectors on Sd−1, Theorem 6.3 recovers the sharp bound (5.15) of Corollary 5.5. In
particular, if u = ϕ/‖ϕ‖ is uniformly distributed on Sd−1 then the logarithmic Kaczmarz
bound ρ is tight and satisfies

∀x ∈ Sd−1, ρ = exp[E log(1− |〈x, u〉|2)] = exp(E(log ξ)) = 1/R,

where R and E(log ξ) are as in Lemma 5.2 and Theorem 5.3.
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