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Abstract. Image inpainting is a particular case of image completion prob-
lem.We describe a novel method allowing to amend the general scenario of
using sparse or TV-based recovery for inpainting purposes by an efficient use
of adaptive one-dimensional directional “sensing” into the unknown domain.
We analyze the smoothness of the image near each pixel on the boundary of the

unknown domain and formulate linear constraints designed to promote smooth
transitions from the known domain in the directions where smooth behavior

have been detected. We include a theoretical result relaxing the widely known
sufficient condition of sparse recovery based on coherence, as well as observa-
tions on how adding the directional constraints can improve the well-posedness
of sparse inpainting.

The numerical implementation of our method is based on ADMM. Exam-
ples of inpainting of natural images and binary images with edges crossing the
unknown domain demonstrate significant improvement of recovery quality in
the presence of adaptive directional constraints. We conclude that the intro-
duced framework is general enough to offer a lot of flexibility and be successfully

utilized in a multitude of image recovery scenarios.

1. Introduction. The task of recovering missing data elements from the known
part of the dataset in a variety of contexts is typical yet often ill posed problem
in many fields of scientific research. Inpainting, the process of reconstructing lost
or occluded parts of images, falls into this category, and is, in fact, an ancient art
itself.

The human visual system has an amazing ability to fill in the missing parts of
images in order to complete our visual perception and better orient us in space,
but automatizing this process is very far from trivial. In other scenarios, depending
on the types of data, a deep neural network resembling the human senses may not
be able to fill in the gaps, such as missing parts in X-Ray or magnetic resonance
imaging (MRI) due to the properties of data by far exceeding the complexity of
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even our dymanic visual perception. So automating the filling process, or digital
inpainting, is necessary in these situations.

Three types of inpainting methods have been widely used and studied. The first
type concerns diffusion-based approaches via PDE or variational methods. The use
of PDE methods, which propagate linear structures or level lines into the missing
region was pioneered by Bertalmio et al [4]. Shen and Chan [14] proposed a vari-
ational framework based on total variation (TV) to recover the missing domain.
Many other PDE-based and variational methods showed great recovery results in a
variety of scenarios([3, 6, 5] and more). The second type is examplar-based image
inpainting, which sample and copy best matching texture patches from the known
image neighborhood to the unknown region [20, 15, 32], which is motivated to over-
come the smoothing effect in the textured region or larger missing region. The
third type is a frame-based method [21, 7, 9, 23, 17] which represents images in
sparsifying frames like wavelet frames.

The recent success of compressed sensing (CS) in sparse data recovery [19, 12]
such as matrix completion [11] and image restoration [24, 31] has led to a growing
interest in applying and developing CS methods for imaging data. Moreover, some
nonlinear PDE related variational methods can be computationally complicated,
whereas more straightforward algorithms are developed for CS as demonstrated
in [9]. Therefore it adds simplicity and efficiency to reduce an inpainting problem
to a basis-pursuit problem.

Often in order to build a successful model of sparse image reconstruction one
needs to have either a very redundant or data adaptive representation system. Series
of successful designs of data driven wavelet/tight frame representations have been
developed in [22, 8, 2, 18, 28]. In [8], the authors developed a new approach to
construct adaptively learned discrete tight frames that are more likely to give a
highly sparse approximation of the local features, which is illustrated by applying
those for image denoising. A few of those approaches assume joint sparsity of the
patches of the image in the recovered frame, or otherwise exploit the notion of joint
sparsity. In case of image inpainting such an assumption might present difficulties
due to nature of the unknown domain.

Authors in [22] present an elegant data adaptive construction in the composite
wavelet or shearlet context, where the data adaptive representations are produced
via creating an adaptive multiresolution analysis. However, due to the necessity of
translation invariance in imaging the transforms in question must be undecimated
(stationary). This, together with the use of multiple shearing filters creates a very
significant level of redundancy, and thus is computationally heavy.

Our method provides middle ground between sparse recovery via data adaptive
vs generic systems. This new technique upgrades the sparse recovery in well es-
tablished representation systems in which the natural images are typically sparse
by augmenting the sensing matrix with a data adaptive part imposing directional
constraints, more precisely - the requirements of selective smooth transitions into
the unknown domain along the directions inferred from the known parts of the im-
age. In this sense our method can be viewed as an exemplar-based method in a
generalized sense, as the information in the known domain around the boundary is
prioritized and we selectively enforce the priority information to be propagated into
the unknown domain.

It is important to notice, that while we traditionally assume wavelets and asso-
ciated families of functions to provide sparse representation for the natural images,
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or images with repetitive texture and piecewise smooth edges, these assumptions
typically fail in cases of images with resolution below 256 by 256, thus the classical
sparse reconstruction criteria need to be adjusted for a meaningful formulation of
the respective inverse problem. Moreover, in problems with severe data loss where
the data recovery should rely solely on the geometric features of the image informa-
tion in the nearest proximity, our approach allows a straightforward way to amend
any existing recovery technique with directional constraints that allow an adap-
tive choice of the propagation radius and smoothness of transitions defined by the
parameter (filter) choices.

The framework we describe is very flexible and can be used with a wide variety
of representations, it also allows to incorporate a TV minimization component in
case of appropriate image properties and unknown domains. In fact, we propose a
numerical implementation which, in case only TV and directional components are
involved, performs inpainting within seconds.

We describe the general framework of the method in Section 2, within which
Section 2.3 describes the formation of the directional constraints in detail. Section
3 is devoted to the details of the numerical implementation of the algorithm in the
general framework and the intuition behind the choice of the parameters defining the
directional constraints. Section 5 demonstrates particular examples of the numerical
experiments, highlighting features of the method. We include a novel sufficient
condition for the sparse recovery problem in Section 4. Though not immediately
relevant to the numerical examples shown, we believe it is an important observation
that emphasizes the significance of considering not only the immediate upper and
lower bounds of coherence, but also the dynamics of the progression from upper to
lower. Directions of future work are described in Section 6.

2. Main idea of the method.

2.1. Notations. We will use the variables x orX to represent an image as a matrix:
X ∈ R

m×n or as a column vector x ∈ R
d = R

mn. We will use the following notation
for their conversion when necessary: vec(X) = x, vec−1(x) = X. Let Id denote the
identity matrix of size d× d. For x ∈ R

d, we define ‖x‖p = (
∑

i |xi|p)1/p for p ≥ 1.
The notation [N ] is for the set {1, 2, · · · , N}. Given an index set T ⊂ [N ], let T c

denote the complement index set, and xT denote the restriction of x to the index
subset T . A vector is s-sparse if at most s of its coordinates are nonzero.

Let∇1,∇2 be the horizontal and vertical forward difference operator respectively.
They are defined as

(∇1(X))i,j = Xi,j −Xi,j−1, (∇2(X))i,j = Xi,j −Xi−1,j ,

where the edges are handled periodically. We define the discrete gradient of anm×n
image X using the discrete derivative as ∇X = (∇1X,∇2X)T , and the discretized
TV seminorm as

‖X‖TV := ‖∇X‖1 = ‖∇1X‖1 + ‖∇2X‖1 =
∑

i,j

|(∇1X)i,j |+
∑

i,j

|(∇2X)i,j |.

Note that our definition gives the anisotropic version of TV [16].
In the finite dimensional setting, a frame [13, 30] can be defined as a collection

of vectors that span R
d. We will further conventionally use F to denote a frame,

i.e. a matrix whose columns form a frame. The frame F is a Parseval (tight) frame
if and only if FF ∗ = Id.
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Given λ > 0, the soft thresholding operator is defined as Sλ(a) = max{0, a −
λ} −max{0,−a− λ} for any a ∈ R. Sλ(·) can also applied to a vector as it applies
component-wise. It is well known that

Sλ(v) = argmin
x

1

2
‖x− v‖22 + λ‖x‖1. (1)

2.2. Model overview. Consider a grayscale image x0 with some missing area, see
Figure 1. Let Λ be the set of indices corresponding to the pixels in the known area,
and Λc - the indices of the missing area. We wish to recover the missing part of the
image based on the known part.

�
�

�
�

Λc

Λ(known area)

Figure 1. An image to be inpainted

Let PΛ be the projection onto the known domain Λ, that is, PΛ is the matrix
obtained by zeroing out the rows of Id corresponding to Λc.

The TV regularization technique is a simple and effective image recovery tool [14]
that originates from the ROF denoising model [29]. It can be used for inpainting
in the following formulation

min
x

‖∇1x‖1 + ‖∇2x‖1, subject to PΛx = PΛx0, (2)

or, in the unconstrained form,

min
x
λ (‖∇1x‖1 + ‖∇2x‖1) +

1

2
‖PΛx− PΛx0‖22. (3)

Given a frame F , the frame-based sparse recovery approach (analysis version)
can be modeled as

min ‖F ∗x‖1, subject to PΛx = PΛx0, (4)

or, in the unconstrained form,

minµ‖F ∗x‖1 +
1

2
‖PΛx− PΛx0‖22, (5)

under the assumption that F ∗x is approximately sparse [7, 9].

Our method combines (3) and/or (5) with an additional linear system B̃x = 0.
In other words, we will solve

min
x
λ (‖∇1x‖1 + ‖∇2x‖1) + µ‖F ∗x‖1 +

1

2
‖PΛx− PΛx0‖22 +

β

2
‖B̃x‖22. (6)

The additional constraint B̃x = 0 implements our intention to preserve smooth-
ness along certain line segments crossing the boundary of the unknown domain. It
is implemented by taking the dot products of the corresponding vectors of inten-
sity values at the chosen pixels with a certain filter. For this reason, B̃x = 0 only
involves a small subset of Λc, which we call active unknowns, denoted by U . After
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solving (6), we only use values of the minimizer at pixels/indices U ⊂ Λc. Conse-
quently, Λc is shrunk and we keep solving (6) until Λc = ∅. Next section provides

the details of the process to create B̃x = 0.

2.3. Adaptive directional constraints. We define a boundary pixel/index to
be a pixel that is in the unknown domain Λc and has an adjacent pixel that is in
Λ. Each pixel has 8 adjacent pixels. The linear system B̃x = 0 is generated by
testing the smoothness of the image near the boundary of the unknown domain
and imposing the constraints that the smooth transitions in certain directions must
be preserved across the boundary of the domain as well. For each boundary pixel,
there are 8 choices of directions {kπ/4}7k=0 for consideration. Depending on the
geometry of the domain and features of the known part of the image only few of
them will end up being considered.

Let h = (h1, h2, · · · , hl) denote a high pass filter. For simplicity of the illustra-
tion, we will assume image intensity to have the range 0, . . . , 255 in this discussion.
Numerical experiments were performed with normalized images.

1. Testing the known part of the image. For each pixel Xi,j of the unknown
domain we check whether there are l pixels in the known domain along a straight
line segment starting from a pixel adjacent to Xi,j pixel in each of the 8 possible
directions. For instance, for the direction associated with π/4 or ‘North East’
we would need to check if pixels {Xi+t,j+t}lt=1 are in the known domain Λ. In
general, the respective vectors are formed by considering {Xi+δ1t,j+δ2t}lt=1 with
δ1, δ2 ∈ {−1, 0, 1}, namely - direction 0, or ‘East’ corresponds to δ1 = 1, δ2 = 0,
direction π/4, or ‘North East’ corresponds to δ1 = 1, δ2 = 1, and so on up to
direction 7π/4, or ‘South East’ with δ1 = 1, δ2 = −1. For those directions where we
found enough pixels (i.e. indices {(i + δ1t, j + δ2t)}lt=1 correspond to pixels in Λ),
we perform analysis of smoothness of the image in that direction near the unknown
pixel Xi,j by computing the dot product between those intensity values and the

wavelet high pass filter h. If the product
∑l

t=1 hkXi+δ1t,j+δ2t = 0 or is sufficiently
close to zero, we assume that this direction can be used to form a directional sensing
equation.

2. Forming the constraints. For those directions that were chosen we form a
vector from the l/2 + α known pixels and l/2− α unknown pixels along a straight
line segment through the boundary pixel Xi,j and state the directional constraint:
the dot product of this vector with the filter h must be 0. In our experiments we
typically use α = 0 or α = 1. Taking, for simplicity, α = 0, we get the equations

of the form
∑l

k=1 hkXi+δ1(k−l/2),j+δ2(k−l/2) = 0. We will call the equations formed
with of α = 0 centered and the ones with α > 0 shifted. Among all equations, we
can pick exactly one equation per boundary pixel, corresponding to the direction
with the smallest dot product at the testing stage, randomly picking one in cases of
multiple minima. If one wishes to keep the constraints balanced in terms of having
splitting the energy evenly between the known and unknown domain, it would make
sense to require α = 0 (exactly l/2 known and l/2 unknown pixels present in each
constraint). More discussions on forming the constraint equations can be found in
Section 2.3.1.

We will use a 10 × 10 image as an example to illustrate this idea in detail. In
Figure 2, a binary image (pixel value 255 is marked, 0 is left as blank) is missing a
4× 4 square, where the unknown coordinates are labeled. In this example, we pick
h = (

√
3− 1, 3−

√
3,−3−

√
3, 1+

√
3)/8 = (h1, h2, h3, h4), which is the Daubechies
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high frequency wavelet of length 4. We will pick one equation per boundary pixel
and use α = 0.
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Figure 2. Forming boundary equations

Take the boundary pixel X45 as an example, direction 0 is omitted since all pixels
along that direction are in Λc ; direction π/4 is omitted since it has 3 pixels in Λ
and 1 in Λc; directions 5π/4, 6π/4, 7π/4 are omitted for the same reasons; only
directions π/2, 3π/4, π are viable (as marked) and the potential constraints are

Direction π/2 : X46h1 +X45h2 + 255h3 + 0h4 = 0
Direction 3π/4 : X56h1 +X45h2 + 255h3 + 255h4 = 0
Direction π : X55h1 +X45h2 + 0h3 + 0h4 = 0

Observing the image in Figure 2, we ideally would like to propagate the pixel
values along the 3π/4 direction to X45, which means that it would be the best if
we pick the 3π/4 direction. In order to achieve this, we extend along each direction
by l/2 pixels (See Figure 3). Now we have l known pixels along each of the three
directions for X45, and we can compute their inner products with the same filter h:

Direction π/2 : 255h1 + 0h2 + 0h3 + 0h4 = 23.33
Direction 3π/4 : 255h1 + 255h2 + 255h3 + 255h4 = 0
Direction π : 0h1 + 0h2 + 255h3 + 255h4 = −63.75

The direction with the smallest inner product (in magnitude) is picked, so in this
example, direction 3π/4 is the winner, as desired. For the boundary pixel X45, we
obtain the linear equation

h1X56 + h2X45 = −255h3 − 255h4, (7)

or equivalently

h1X56 + h2X45 + h3X34 + h4X23 = 0. (8)

This operation will be repeated for all 12 boundary pixels, and, if we decide to
include only one equation per boundary pixel, B̃ is 12× 100.
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Figure 3. Forming boundary equations: pick the best direction

Equation (8) is one row in B̃x = 0. We see that (7) and (8) are equivalent, so in
the case we use (7), it will be denoted as Bx = b.

2.3.1. Choice of the filter and the number of equations per boundary pixel. Choice

of the high pass Daubechies filter based on wavelet properties In our
experiments we use high pass wavelet filters from the Daubechies family. Our
motivation is based on the properties of the DB-P wavelets to have smallest compact
support for an associated level of regularity P , namely - the basis functions have
P continuous derivatives and the wavelet function ψ has P vanishing moments,
making it orthogonal to polynomials of degrees up to P ([26, 25]). The associated
high pass filter is a vector of length 2P , orthogonal to vectors of polynomial values
(of degree up to P ) with high order of accuracy. Thus, requiring the dot product
of a vector intensities along a chosen direction with the high pass Daubechies filter
of order P (length 2P ) to be equal to zero we effectively impose the condition of
image values changing in this direction with at most polynomial rate of controlled
degree.

Another explanation can be given using the fact that a high pass Daubechies P
filter contains coefficients of a finite difference approximations of the derivative of
the respective order P , we are requiring that the change of image intensities in this
direction have smoothness of order P . Thus, using the Haar filter simply allows us
to impose constant transition to the unknown domain in a chosen direction.

Choice of the filter based on the properties of the unknown domain.

Since our choice of directions for the additional directional constraints is preceded
by analyzing the known part of the image in the respective direction near the
boundary, one needs to make sure that the known domain contains enough pixels
in that direction. Thus, for non-convex domains with complicated boundary it is
appropriate to choose shorter filters, such as Daubechies 2. However, in case of a
large convex domain, using longer filters seems more appropriate.

Let us notice that if we only include directions for which the analysis of the known
domain gave a result sufficiently close to zero, it makes sense to include multiple
filters of varying length, thus automatically making the requirement of transition
smoothness adaptive to a particular image.

An alternative choice is to use the complex filter of length l defined as h =√
l[1, e2πi/l . . . e2πi(l−1)/l]. The length of the vector can be arbitrary and it will

impose constant (i.e. zero frequency) transitions across the domain in the chosen
directions.
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Choice of the number of equations per boundary pixel. Depending on
the image configuration, we can pick exactly one equation per boundary pixel,
corresponding to the direction with the smallest dot product at the testing stage.
Alternatively, we can pick p directions with smallest products, or only include an
equation corresponding to a certain direction if the testing dot product was very
close to zero.

2.3.2. Illustration of parameter choices in a simplified scenario. In case of thin do-
mains, using long enough filters allows to perform a heuristic inpainting solely based
on the directional sensing. This will allow us to clearly see which choices of the con-
straints are more appropriate for a chosen domain.

Figure 4 shows for a simple 64×64 image (top half white, bottom half black) with
a missing domain of size 4× 29, it is possible to create sufficiently many directional
equations involving all unknown pixels so that the problem can be solved as an
overcomplete problem in the least squares sense.

(a) (b) (c) (d) (e)

Figure 4. Recovery via directional sensing only. (a) Image with
a thin missing domain. (b) ‘DB-2’, all smooth directions per pixel
included, both centered and shifted equations used. (c) ‘DB-2’,
all smooth directions per pixel included, only centered equations
used. (d) ‘DB-2’, one direction per pixel included, only centered
equations used could be formed as the filter has length 2. (e)
‘DB-4’, all smooth directions included, both centered and shifted
equations used.

Figure 4 (b) shows the result of imposing the constraints using the high pass filter
‘DB-2’ (of length 4), all smooth directions per pixel included, equations formed
with both centered and shifted filters (i.e. 2 known-2 unknown and 3 known 1
unknown) combinations considered (see part two of the algorithm description in
Section 2.3). We observe that the corner points of the missing domain for which
three directions were used ended up with undesirable recovered intensity due to
contradictory conditions. In Figure 4 (c) we can see the changes in the result if
only centered equations are used, (d) gives us an underdetermined system since we
only choose one equation per pixel, a similar picture would result if we used a short
filter DB-1, and thus the equations would not involve all unknown pixels. (e) uses
‘DB-4’, which is too long for the chosen domain, creates overdetermined system of
conflicting constrains resulting in a blurred averaged recovery.

The above tests simply give a visual meaning to the impact of the directional
constraints as our choice of the filter and number and type of the equations vary.
However, the directional constraints only serve as a useful addition to the sparse
image recovery model. Figure 5 shows examples of the directional constraints that
were used in our actual numerical experiments involving sparse recovery that are
presented in Section 5.
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fk+1 = argmin
f
L(xk+1, dk1 , d

k
2 , f, r

k
1 , r

k
2 , r

k
f ) (12)

= argmin
f
µ‖f‖1 +

ρf
2
‖F ∗xk+1 − f + rkf‖22

rk+1
1 = rk1 +∇1x

k+1 − dk+1
1 (13)

rk+1
2 = rk2 +∇2x

k+1 − dk+1
2 (14)

rk+1
f = rkf + F ∗xk+1 − fk+1 (15)

These seven steps are standard in ADMM. See [27, Section 3.1].
The problem (9) is to find the least squares solution of













PΛ√
βB√
ρfF

∗

√
ρ∇1√
ρ∇2













x =













PΛx0√
βb√

ρff
k −√

ρfr
k
f√

ρdk1 −√
ρrk1√

ρdk2 −√
ρrk2













,

whose normal equation is

(P ∗
ΛPΛ + βB∗B + ρ∇∗

1∇1 + ρ∇∗
2∇2 + ρfFF

∗)x

=P ∗
ΛPΛx0 + βB∗b+ ρ∇∗

1(d
k
1 − rk1 ) + ρ∇∗

2(d
k
2 − rk2 ) + ρfF (f

k − rkf ) (16)

The problems (10), (11), and (12) have a direct solution. By (1), each one is
solved by a soft thresholding step:











dk+1
1 = Sλ

ρ
(∇1x

k+1 + rk1 )

dk+1
2 = Sλ

ρ
(∇2x

k+1 + rk2 )

fk+1 = Sµ
ρ
(F ∗xk+1 + rkf )

(17)

3.1. Solving the normal equation. Equation (16) is the most time consuming
step. If an image is m × n, then the coefficient matrix is mn ×mn, which is very
big for a relatively high resolution image. Fortunately, we can take advantage of
the special structures of these operators, and solve (16) efficiently. We explain the
details below.

First, PΛ is a diagonal matrix. We use EΛ to indicate the m × n mask where
its value is 1 on Λ and 0 on Λc. Then P ∗

ΛPΛx = PΛx = EΛ � X, where � is the
point-wise multiplication of two matrices.

Secondly, B = [0, BΛc ], so B∗B =

[

0 0
0 B∗

ΛcBΛc

]

, and B∗Bx =

[

0
B∗

ΛcBΛcxΛc

]

,

which is computed on the scale of number of unknown pixels, not the whole image.
We also note that B∗B is diagonally dominant. Let diag(B∗B) be the mn ×mn
diagonal matrix that only extracts the diagonal of B∗B, and BD be the diagonal of

B∗B that reshapes to an m×n matrix, then diag(B∗B)x =

[

0
diag(B∗

ΛcBΛc)xΛc

]

=

BD �X.
Thirdly, it can be easily shown that

∇1(x) = XDn, ∇∗
1(x) = XD∗

n, ∇2(x) = D∗
mX, ∇∗

2(x) = DmX,
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where

Dk =



















1 −1
1 −1

1 −1
. . .

1 −1
−1 1



















k×k

.

Moreover, ∇∗
1∇1 +∇∗

2∇2 is diagonally dominant whose diagonal entries are all 4.
Lastly, we will assume F is Parseval so FF ∗ is the identity.
Given a system Φx = a, one iteration of Jacobi’s method is

diag(Φ)xk+1 = a− (Φ− diag(Φ)xk),

which is to separate Φ to the diagonal part and non-diagonal part.
Since the system (16) is diagonally dominant, we will use Jacobi’s iteration to

solve it approximately. Let the right hand side of (16) be rhs, then (16) becomes



PΛ + βdiag(B∗

B) + 4ρ+ ρf
︸ ︷︷ ︸

diagonal part

+β[B∗

B − diag(B∗

B)] + ρ[∇∗

1∇1 +∇
∗

2∇2 − 4]
︸ ︷︷ ︸

nondiagonal part




x = rhs.

According to Jacobi’s iteration, this can be approximately solved by

(PΛ+βdiag(B∗

B)+4ρ+ρf )x
k+1 = rhs−β[B∗

B−diag(B∗

B)]xk
−ρ[∇∗

1∇1+∇
∗

2∇2−4]xk
,

(18)

which is simplified to

[EΛ + βBD + 4ρEm×n + ρfEm×n]�Xk+1

= rhs− βvec−1(B∗Bxk) + βBD �Xk − ρ(XkDnD
∗
n +DmD

∗
mX

k) + 4ρXk, (19)

where Em×n is the m× n matrix whose entries are all 1’s. (19) can be solved very
efficiently.

With a fixed ρ, ρf , the iterative steps for solving (6) can be summarized below.

Initialization: x0, d01, d
0
2, w

0, r01, r
0
2, r

0
w, ρ, ρf , tol

while ‖xk − xk−1‖2/‖x0‖2 > tol
perform (19) to obtain xk+1,

dk+1
1 = Sλ

ρ
(∇1x

k+1 + rk1 ),

dk+1
2 = Sλ

ρ
(∇2x

k+1 + rk2 ),

fk+1 = Sµ
ρ
(F ∗xk+1 + rkf ),

rk+1
1 = rk1 +∇1x

k+1 − dk+1
1 ,

rk+1
2 = rk2 +∇2x

k+1 − dk+1
2 ,

rk+1
f = rkf + F ∗xk+1 − fk+1

end

We remark that in case F is an orthonormal basis and no TV is involved, we
can solve it via soft shrinkage, but in its most complete formulation we need to use
ADMM.

4. Sparse recovery: `1 minimization analysis. Given a linear system Ax =
y = Ax0 and a frame F , solving the `1-analysis problem

min ‖F ∗x‖1, subject to Ax = Ax0 (20)
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tends to provide a solution that is sparse under F given A is well conditioned [10, 1].
In the compressed sensing framework, to guarantee a unique sparse recovery via such
`1-analysis, there are sufficient conditions based on requirements on the null space
of A (see Lemma 4.2), or a restricted isometry property of AF [10] conditional on
the required level of sparsity. In this section, we will present another result of this
kind. We believe this result is beneficial for the image inpainting context, and also
a new theoretical result, to the author’s best knowledge.

Definition 4.1. Let the columns of Φ be ϕi, i ∈ [N ]. The coherence of Φ is defined
as

µ(Φ) := max
i 6=j

|〈ϕi, ϕj〉|
‖ϕi‖22

. (21)

Given a positive integer s ≤ N − 1, we also define a general coherence function

µs(Φ) := max
j∈[N ]

max
|T |=s,j /∈T

∑

i∈T

|〈ϕi, ϕj〉|
‖ϕi‖22

.

It is clear that µ1(A) = µ(A).
The common definition of coherence requires the columns of Φ to be normalized,

in which case it coincides with (21). However, normalizing columns hides the true
coherence. We present the general version to accommodate all matrices and to
reveal the true quantity that is important in signal recovery.

The following lemma can be viewed as a consequence of [1, Theorem 3.1]. Nev-
ertheless we provide a proof as the theorem in [1] is too general.

Lemma 4.2. Suppose for every x ∈ kerA\{0}, it holds that

‖(F ∗x)T ‖1 < ‖(F ∗x)T c‖1, for all |T | ≤ s. (22)

Then for every vector x0 such that F ∗x0 is s-sparse, (20) has a unique solution x0.

Proof. Given x0 such that F ∗x0 is s-sparse, let Ax = Ax0 but x 6= x0, then v =
x0 − x ∈ kerA\{0}. Suppose T is the support of F ∗x0, then

‖F ∗x0‖1 ≤ ‖F ∗x0 − (F ∗x)T ‖1 + ‖(F ∗x)T ‖1 = ‖(F ∗v)T ‖1 + ‖(F ∗x)T ‖1
(22)
< ‖(F ∗v)T c‖1 + ‖(F ∗x)T ‖1 = ‖(F ∗x)T c‖1 + ‖(F ∗x)T ‖1 = ‖(F ∗x)‖1,

proving that in the feasible set, x0 minimizes ‖F ∗x‖1.
Theorem 4.3. Let F be a Parseval frame, and a positive integer s ≤ N be given.

If

µs(AF ) + µs−1(AF ) < 1, (23)

then for every vector x0 such that F ∗x0 is s-sparse, (20) has a unique solution x0.

Proof. Using Lemma 4.2, we only need to show that (23) implies (22). Let x ∈
kerA\{0}, then AFF ∗x = Ax = 0. Let F ∗x = (c1, c2, · · · , cN ) and AF =
[v1, v2, · · · , vn], so AFF ∗x = 0 translates into

∑

j cjvj = 0. Fix an arbitrary |T | = s,
for every i ∈ T ,

ci‖vi‖22 = −
∑

j 6=i

cj〈vj , vi〉 = −
∑

l∈T c

cl〈vl, vi〉 −
∑

j∈T,j 6=i

cj〈vj , vi〉.

Then

|ci|‖vi‖22 ≤
∑

l∈T c

|cl||〈vl, vi〉|+
∑

j∈T,j 6=i

|cj ||〈vj , vi〉|
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=⇒ |ci| ≤
∑

l∈T c

|cl|
|〈vl, vi〉|
‖vi‖22

+
∑

j∈T,j 6=i

|cj |
|〈vj , vi〉|
‖vi‖22

.

Summing over i ∈ T and exchanging summations, we have

‖(F ∗x)T ‖1 ≤
∑

l∈T c

|cl|
∑

i∈T

|〈vl, vi〉|
‖vi‖22

+
∑

j∈T

|cj |
∑

i∈T,i 6=j

|〈vj , vi〉|
‖vi‖22

≤
∑

l∈T c

|cl|µs(AF ) +
∑

j∈T

|cj |µs−1(AF )

= µs(AF )‖(F ∗x)T c‖1 + µs−1(AF )‖(F ∗x)T ‖1,
which simplifies to (1− µs−1(AF )) ‖(F ∗x)T ‖1 ≤ µs(AF )‖(F ∗x)T c‖1. So (22) is
satisfied if 1− µs−1(AF ) > µs(AF ).

A sufficient condition for (23) is µ(AF ) < 1
2s−1 since µs(AF ) ≤ sµ(AF ). We

immediately have the following corollary.

Corollary 1. Let F be a Parseval frame, and a positive integer s ≤ N be given.

If µ(AF ) < 1
2s−1 , then for every vector x0 such that F ∗x0 is s-sparse, (20) has a

unique solution x0.

The condition µ(AF ) < 1
2s−1 is much easier to verify, but it may be too harsh

for matrices to satisfy given a reasonably big s.

4.1. Benefits of adding directional constraints. This section analyzes the ben-
efit of the directional constraint matrix B̃ in the context of our sparse recovery
problem. In this analysis we set aside the TV term and only consider sparsity in a
frame F . We will compare (4)

min ‖F ∗x‖1, subject to PΛx = PΛx0,

and

min ‖F ∗x‖1, subject to

[

PΛ√
βB̃

]

x =

[

PΛx0
0

]

, (24)

or rather problem (6) with λ = 0 and non-zero β, and numerically test the sensing

matrix improvement from PΛ to S =

[

PΛ√
βB̃

]

.

It is clear that if the frame F has one or more elements supported entirely in the
unknown domain, the problem (4) does not have properties like (22). This is the
case for many scenarios involving large convex missing domains and typical sparse
representations, say, compactly supported multiscale systems, which makes sparse
recovery within those fixed systems ill posed.

We would like to point out that image inpainting is often subjective, and unique
recovery via our model should not be a necessary requirement. Nevertheless, we
illustrate numerically that the properties of the matrix SF indeed significantly
improve (compared to PΛF ) using our simple example of a binary image with a
rectangular missing domain, even though the criteria of the lemmas mentioned
above do not necessarily apply.

Table 1 lists the properties of PΛF vs SF : maximum cosine of the angles between
the columns, coherence µ1, minimum and maximum singular values, which, when
positive, make SF a frame. We fix F to be the 2D DB-4 wavelet transform matrix
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with 5 levels of decomposition,
√
β = .75. We use all smooth directions found,

include only centered equations. The middle line of the table shows the improvement
of including the directional restrictions obtained with DB-2 high pass filter h. The
last line of the table represents the outcome of using two high pass filters, DB-2 and
DB-4, and thus two matrices of directional constraints:

S2 =





PΛ√
βB̃√
βB̃2



 .

Cosine Coherence µ1 Min singular value Max singular value
PΛF 0.8541 3.8339 0 1
SF (1 filter) 0.4799 0.5888 0.0455 1.5255
S2F (2 filters) 0.3913 0.4480 0.0937 1.9837

Table 1. Here
√
β = .75, F is the reshaped 2D DB-4 wavelet

basis matrix, the first filter h is a high pass DB-2 filter, all smooth
directions used and only centered equations included, the second
filter added is a high pass DB-4 filter.

It is worth mentioning that using the orthonormal basis of Weyl matrices [30,
Chapter 14] as F gives very low coherence of PΛF even without the directional
constraints, but adding those still allows to improve it - see Table 2. However, even
though existence and uniqueness of sparse solutions are guaranteed, the results of
recovery are not always great. While we can recover the image perfectly using the
Weyl basis in case of the simple example we chose to test different directional filters,
results of recovery of natural images, such as the peppers image in Figure 9a, are
far from desired.

Cosine Coherence µ1 Min singular value Max singular value
PΛF 0.0667 0.0667 0 1
SF (1 filter) 0.0452 0.0457 0.0455 1.5255

Table 2. Here
√
β = .75, F is the reshaped 2D binary Weyl basis

matrix, the filter h is a high pass DB-2 filter, all smooth directions
used and only centered equations included.

5. Numerical results. This section presents several numerical experiments on
inpainting. The first three experiments only use TV regularization, that is, µ = 0
in model (6), which is a natural choice for binary images with piecewise smooth
edges. We compare recovery results with and without the directional information.
Experiments are done on a Macbook Pro with 3.1GHz Intel Core i7 and 16GB
memory.

The first experiment (Figure 6) is to remove a rectangular block from a 64× 64
binary image with a vertical stripe in the middle. We pick a wide range of λ, but
without the directional information (see Figure 6 (b)(c)), TV methods are having
difficulty since the height of the missing domain is larger than the width of the
white stripe. As shown in Figure 6 (d), we get a much better recovery result with
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(a) corrupted image (b) model (3), λ = 1 (c) model (3), λ =
103

(d) with directional
constraints

Figure 6. Inpaint a missing block of a vertical stripe, 64× 64

the direction information. Specifically, the parameters in model (6) are h =DB-2,
λ = 1, µ = 0, β = 0.05. The recovery takes about 0.5 second.

The second experiment (Figure 7) is to remove a thin block from slanted stripes.
Figure 7 (b)(c) show unsatisfactory results without the direction information. With
direction information, this experiment echos the illustrative example in Figure 2.
As expected, we obtain a perfect reconstruction using the proposed model (6). The
parameters are h =DB-3, λ = 10−2, µ = 0, β = 20. The experiment takes about 1.4
seconds.

(a) corrupted image (b) model (3), λ = 10 (c) model (3), λ =
0.01

(d) with directional
constraints

Figure 7. Inpainting a thin missing block in an image with repet-
itive pattern of slanted stripes, 64× 64

The third experiment (Figure 8) is to remove an annulus from a sectional image.
Figure 8 (b)(c) display typical recovery results with TV. On the contrast, with
directional information (parameters are h =DB-1, λ = 1, µ = 0, β = 100), Figure
8 (d) recovers all the sectional stripes from different directions. This experiment
takes about 4 seconds running time.

The fourth experiment (Figure 9) is to inpaint a natural image with a text mask.
Figure 9 (a)(b) show the original and texted images respectively. Figure 9(c) uses
model (5) in a wavelet basis which has no directional constraints. Figure 9(e)
inpaints via wavelet sparsity with directional constraints (model (6) with λ = 0),
resulting a better recovery, both visually, and in terms of SNR. We also add the TV
result in Figure 9(d) as a comparison and show that the wavelet is doing better in
this natural image example.

The fifth experiment (Figure 10) recovers smooth stripes that are masked with
9 thick rectangular blocks. It is also performed with the without TV. Figure 10(c)
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(a) corrupted image (b) model (3), λ =
103

(c) model (3), λ = 1 (d) with directional
constraints

Figure 8. Inpaint a missing annulus of a sectional image, 128× 128

(a) original image (b) corrupted image, SNR =
19.71 dB

(c) model (5), SNR = 26.75
dB

(d) TV with directional con-
straints λ = 103, SNR =
29.05 dB

(e) wavelet with directional
constraints, SNR=29.20dB

Figure 9. Text removal of Pepper, 128× 128

uses sparse recovery in DB-4 basis with 5 levels of decomposition. Figure 10(d) adds
directional constraints implemented using filters DB-2 and DB-4, which results a
visually perfect inpainted image. It is worth pointing out that wavelet sparsity has
a clear advantage over TV in this smooth image.

The last experiment (Figure 11) is to remove texts from an RGB image. Red,
green and blue channels were processed independently. Using the same indicator of
the missing domain, the directional constraints were formed for each of the color
channels separately, using filters ‘DB-2’ and ‘DB-4’. All directions with sufficient
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(a) original image (b) corrupted image (c) model (5), SNR
= 25.87dB

(d) with directional
constraints, SNR =
44.84dB

Figure 10. Smooth stripes inpainting, 64× 64

smoothness were included, only centered equations used.
√
β = 3/4. Here F is the

matrix of the two dimensional ‘DB4’ transform with 5 levels of decomposition. The
SNR for R, G, and B are 35.06, 32.52 and 28.10 dB respectively. The overall SNR
is 32.27dB. In this example, we see that our model blends channels well.

(a) original image (b) corrupted image (c) wavelet, with directional
constraints, SNR = 32.27dB

Figure 11. Text removal of a colored image, 128× 128

6. Conclusions and directions of future work. We described a method allow-
ing to amend the general scenario of using sparse recovery for inpainting purposes by
an efficient use of adaptive one-dimensional directional “sensing” into the unknown
domain.

The introduced framework is general enough to offer a lot of flexibility and be
successfully utilized in a multitude of image recover scenarios. We would like to
outline our further research directions and indicate the avenues of investigation we
consider of most importance.

‘DB’ (Daubechies) wavelet filters were used in this framework since they are the
shortest known wavelet filters orthogonal to polynomial changes of the respective
order, so our motivation for their use was to use smooth transition constrains for
domains of a variety of sizes. The next step will be to investigate the filters of a
certain order of length enforcing smoothness of a given order.

While for short filters checking the 8 possible directions of change is adequate, in
case of the need to propagate the information into unknown domains along smooth
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curves, different trajectories of the directional sensing should be considered, de-
pending on the problem context. While not the most efficient technique for the
most general recovery, our method will still provide fast and accurate reconstruc-
tion given additional geometric assumptions on the data, that we hope to obtain
from the preliminary analysis of the unknown domains.

To take it to the next level of complexity, we would like to investigate the rela-
tionship between the sparse representation system F and the filter used to enforce
the smoothness, and pick the pairings that potentially have the best sparse recovery
properties for certain wide classes of missing domains.

Finally, we would like to fine-tune the adaptive basis recovery algorithms such as
(6) to fit the inpainting scenario in the patch-wise case, including both the shape of
the unknown domain and the proposed smoothness of transitions as the constraints.
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[15] A. Criminisi, P. Pérez and K. Toyama, Region filling and object removal by exemplar-based
image inpainting, IEEE Trans. Image Processing, 13 (2004), 1200–1212.

[16] J. Darbon and M. Sigelle, A fast and exact algorithm for total variation minimization, in
Pattern Recognition and Image Analysis, Lecture Notes in Computer Science, 3522, Springer,
2005, 351–359.

[17] J. Dobrosotskaya and W. Guo, Data adaptive multi-scale representations for image analysis,
in Wavelets and Sparsity XVIII , 11138, International Society for Optics and Photonics, 2019.



INPAINTING VIA SPARSE RECOVERY WITH DIRECTIONAL CONSTRAINTS 247

[18] B. Dong and Z. Shen, Image restoration: A data-driven perspective, Proceedings of the 8th

International Congress on Industrial and Applied Mathematics, Higher Ed. Press, Beijing,

2015, 65–108.

[19] D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), 1289–1306.
[20] A. A. Efros and T. K. Leung, Texture synthesis by non-parametric sampling, Proceedings of

the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 1999.
[21] M. Elad, J.-L. Starck, P. Querre and D.-L. Donoho, Simultaneous cartoon and texture image

inpainting using morphological component analysis (MCA), Appl. Comput. Harmon. Anal.,
19 (2005), 340–358.

[22] B. Han, G. Kutyniok and Z. Shen, Adaptive multiresolution analysis structures and shearlet
systems, SIAM J. Numer. Anal., 49 (2011), 1921–1946.

[23] E. J. King, G. Kutyniok and X. Zhuang, Analysis of inpainting via clustered sparsity and
microlocal analysis, J. Math. Imaging Vision, 48 (2014), 205–234.

[24] M. Lustig, D. Donoho and J. M. Pauly, Sparse MRI: The application of compressed sensing
for rapid MR imaging, Magnetic Resonance in Medicine, 58 (2007), 1182–1195.

[25] S. Mallat, A Wavelet Tour of Signal Processing, Elsevier/Academic Press, Amsterdam, 2009.

[26] Y. Meyer, Wavelets and Operators, Cambridge Studies in Advanced Mathematics, 37, Cam-
bridge University Press, Cambridge, 1992.

[27] N. Parikh and S. Boyd, Proximal Algorithms, Now Foundations and Trends, 2014, 128pp.

[28] Y. Quan, H. Ji and Z. Shen, Data-driven multi-scale non-local wavelet frame construction
and image recovery, J. Sci. Comput., 63 (2015), 307–329.

[29] L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,

Phys. D , 60 (1992), 259–268.
[30] S. F. D. Waldron, An Introduction to Finite Tight Frames, Applied and Numerical Harmonic
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